The Best Classifier

Final Project in Machine Learning with Python

Rohan Lewis

2020.10.03

This is a predictive modeling project of loan classification using select machine learning algorithms.

I. Setup and II. Pre-Processing were provided by the course. I modified a few aspects to fit my style, such as section labeling, modifying graphs, as well as variable naming conventions in Python, and editing the dataframe column names.

III. Classification, IV. Scoring, and V. Appendix were coded by me.

I. Setup

1. Packages

In [1]:
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
import seaborn as sns
from sklearn import preprocessing

%matplotlib inline

2. About the Dataset

This dataset is about past loans. The loan_train.csv data set includes details of 346 customers whose loan are already paid off or defaulted. It includes following fields:

Field Description
Loan_status Whether a loan is paid off on in collection
Principal Basic principal loan amount at the
Terms Origination terms which can be weekly (7 days), biweekly, and monthly payoff schedule
Effective_date When the loan got originated and took effects
Due_date Since it’s one-time payoff schedule, each loan has one single due date
Age Age of applicant
Education Education of applicant
Gender The gender of applicant

3. Load Data From CSV File

In [2]:
import wget

url = "https://s3-api.us-geo.objectstorage.softlayer.net/cf-courses-data/CognitiveClass/ML0101ENv3/labs/loan_train.csv"
filename = wget.download(url)
df = pd.read_csv(filename)
100% [..............................................................................] 23101 / 23101

4. Convert to Datetime Object

In [3]:
df['due_date'] = pd.to_datetime(df['due_date'])
df['effective_date'] = pd.to_datetime(df['effective_date'])
df.head()
Out[3]:
Unnamed: 0 Unnamed: 0.1 loan_status Principal terms effective_date due_date age education Gender
0 0 0 PAIDOFF 1000 30 2016-09-08 2016-10-07 45 High School or Below male
1 2 2 PAIDOFF 1000 30 2016-09-08 2016-10-07 33 Bechalor female
2 3 3 PAIDOFF 1000 15 2016-09-08 2016-09-22 27 college male
3 4 4 PAIDOFF 1000 30 2016-09-09 2016-10-08 28 college female
4 6 6 PAIDOFF 1000 30 2016-09-09 2016-10-08 29 college male

II. Pre-Processing

Exploring the number of a few classes in the data set.

1. Dependent Variable

In [4]:
df['loan_status'].value_counts()
Out[4]:
PAIDOFF       260
COLLECTION     86
Name: loan_status, dtype: int64

2. Gender

a. By Principal Amount

In [5]:
bins = np.linspace(df.Principal.min(), df.Principal.max(), 10)
sns.set(font_scale = 2.5)
g = sns.FacetGrid(df,
                  col = "Gender",
                  hue = "loan_status",
                  palette = "viridis",
                  col_wrap = 2,
                  height = 9,
                  aspect = 13 / 9)
g.map(plt.hist,
      'Principal',
      bins = bins,
      ec = "k")
g.set(ylabel = "Fequency")
g.axes[-1].legend();

b. By Age

In [6]:
bins = np.linspace(df.age.min(), df.age.max(), 10)
sns.set(font_scale = 2.5)
g = sns.FacetGrid(df,
                  col = "Gender",
                  hue = "loan_status",
                  palette = "viridis",
                  col_wrap = 2,
                  height = 9,
                  aspect = 13 / 9)
g.map(plt.hist,
      'age',
      bins = bins,
      ec = "k")
g.set(xlabel = "Age",
      ylabel = "Fequency")
g.axes[-1].legend();
In [7]:
df.groupby(['Gender'])['loan_status'].value_counts(normalize = True)
Out[7]:
Gender  loan_status
female  PAIDOFF        0.865385
        COLLECTION     0.134615
male    PAIDOFF        0.731293
        COLLECTION     0.268707
Name: loan_status, dtype: float64

86 % of female pay there loans while only 73 % of males pay there loan. Convert male to 0 and female to 1.

In [8]:
df['Gender'].replace(to_replace = ['male', 'female'],
                     value = [0, 1],
                     inplace = True)
df.head()
Out[8]:
Unnamed: 0 Unnamed: 0.1 loan_status Principal terms effective_date due_date age education Gender
0 0 0 PAIDOFF 1000 30 2016-09-08 2016-10-07 45 High School or Below 0
1 2 2 PAIDOFF 1000 30 2016-09-08 2016-10-07 33 Bechalor 1
2 3 3 PAIDOFF 1000 15 2016-09-08 2016-09-22 27 college 0
3 4 4 PAIDOFF 1000 30 2016-09-09 2016-10-08 28 college 1
4 6 6 PAIDOFF 1000 30 2016-09-09 2016-10-08 29 college 0

3. Day of Week

In [9]:
df['dayofweek'] = df['effective_date'].dt.dayofweek
bins = np.linspace(df.dayofweek.min(), df.dayofweek.max(), 10)
sns.set(font_scale = 2.5)
g = sns.FacetGrid(df,
                  col = "Gender",
                  hue = "loan_status",
                  palette = "viridis",
                  col_wrap = 2,
                  height = 9,
                  aspect = 13 / 9)
g.map(plt.hist,
      'dayofweek',
      bins = bins,
      ec = "k")
g.set(xlabel = "Day of Week",
      ylabel = "Fequency")
g.axes[-1].legend();

Categorize days by being a weekend or not.

In [10]:
df['Weekend'] = df['dayofweek'].apply(lambda x: 1 if (x > 3) else 0)
df.head()
Out[10]:
Unnamed: 0 Unnamed: 0.1 loan_status Principal terms effective_date due_date age education Gender dayofweek Weekend
0 0 0 PAIDOFF 1000 30 2016-09-08 2016-10-07 45 High School or Below 0 3 0
1 2 2 PAIDOFF 1000 30 2016-09-08 2016-10-07 33 Bechalor 1 3 0
2 3 3 PAIDOFF 1000 15 2016-09-08 2016-09-22 27 college 0 3 0
3 4 4 PAIDOFF 1000 30 2016-09-09 2016-10-08 28 college 1 4 1
4 6 6 PAIDOFF 1000 30 2016-09-09 2016-10-08 29 college 0 4 1

4. Education

Education has four categories.

In [11]:
df.groupby(['education'])['loan_status'].value_counts(normalize = True)
Out[11]:
education             loan_status
Bechalor              PAIDOFF        0.750000
                      COLLECTION     0.250000
High School or Below  PAIDOFF        0.741722
                      COLLECTION     0.258278
Master or Above       COLLECTION     0.500000
                      PAIDOFF        0.500000
college               PAIDOFF        0.765101
                      COLLECTION     0.234899
Name: loan_status, dtype: float64

5. Feature Selection

In [12]:
Feature = df[['Principal','terms','age','Gender','Weekend']]
#Convert 'education' to dummy variables.
Feature = pd.concat([Feature, pd.get_dummies(df['education'])], axis = 1)
Feature.drop(['Master or Above'], axis = 1, inplace = True)
#Rename columns.
Feature.rename(columns = {'terms': 'Terms',
                          'age': 'Age',
                          'Bechalor': 'Bachelor',
                          'college': 'College'},
               inplace = True)
Feature.head()
Out[12]:
Principal Terms Age Gender Weekend Bachelor High School or Below College
0 1000 30 45 0 0 0 1 0
1 1000 30 33 1 0 1 0 0
2 1000 15 27 0 0 0 0 1
3 1000 30 28 1 1 0 0 1
4 1000 30 29 0 1 0 0 1

6. Normalize Data

In [13]:
X = Feature
y = df['loan_status'].values
X = preprocessing.StandardScaler().fit(X).transform(X)

III. Classification

1. Packages

In [14]:
from sklearn.model_selection import validation_curve as VC
from sklearn.neighbors import KNeighborsClassifier as KNC
from sklearn.ensemble import RandomForestClassifier
from sklearn import metrics
from sklearn import svm
from sklearn.model_selection import GridSearchCV
from sklearn.linear_model import LogisticRegression as LR

2. K-Nearest Neighbor(KNN)

For K-Nearest Neighbors, I choose a 5-fold cross-validation split across 1 to 70 neighbors.

In [15]:
k_neighbors = list(range(1, 71))
train_scores, valid_scores = VC(KNC(),
                                X, y,
                                param_name = 'n_neighbors',
                                param_range = k_neighbors,
                                cv = 5)
train_knn = []
valid_knn = []

for k in range(70) :
    train_knn.append(sum(train_scores[k]) / 5)
    valid_knn.append(sum(valid_scores[k]) / 5)
In [16]:
fig, ax = plt.subplots(figsize=(12, 8))
ax.plot(k_neighbors,
        train_knn,
        c = 'b',
        lw = 3,
        label = "Train Set")
ax.plot(k_neighbors,
        valid_knn,
        c = 'g',
        lw = 3,
        label = "Validation Set")

ax.set_title("Train and Test Set Accuracies of KNN for 1 - 70 Neighbors", fontsize = 22)
ax.set_xlabel(xlabel = "Number of Neighbors", fontsize = 18)
ax.set_ylabel(ylabel = "Accuracy", fontsize = 18)
ax.tick_params(axis = 'both', labelsize = 16)
ax.legend(fontsize = 18)
plt.figtext(0.9, 0, "5-fold cross-validation values were averaged.", ha = 'right', fontsize = 12);

Using approximately 50 nearest neighbors or more yields a converged accuracy of about 0.75 for the train and validation sets.

In [17]:
knn_model_final = KNC(n_neighbors = 50).fit(X, y)
metrics.accuracy_score(y, knn_model_final.predict(X))
Out[17]:
0.7456647398843931

3. Decision Tree (Random Forest)

Because the training data set is small, I decided to use Random Forest to optimize. Random Forests are a collection of Decision Trees used to build a final model. A single decision tree is computed very quickly, however it is prone to overfitting. Random Forest calculates the importance of the features from the many trees used to create it.

I created a Random Forest from 30 Decision Trees.

In [18]:
dtrf_model_final = RandomForestClassifier(n_estimators = 30, max_depth = 10, random_state = 3333).fit(X, y)
metrics.accuracy_score(y, dtrf_model_final.predict(X))
Out[18]:
0.8872832369942196

4. Support Vector Machine

I performed a grid search on a search vector machine, varying $C$ from $10^{-5}$ to $10^5$ and varying $γ$ from $10^{-7}$ to $1$, both by powers of $10$.

Similar to the KNN model, I used the average accuracy from 5-fold cross-validation.

In [19]:
C_list = [10**n for n in range(-5, 5)]
gamma_list = [10**n for n in range(-7, 0)]
param_grid = {'C': C_list,  
              'gamma': gamma_list} 

grid = GridSearchCV(svm.SVC(),
                    param_grid,
                    cv = 5,
                    refit = True,
                    verbose = 0).fit(X, y)
In [20]:
grid.best_params_
Out[20]:
{'C': 1e-05, 'gamma': 1e-07}

The GridSearch algorithm yields that the best hyperparameters are $C = 10^{-5}$ and $γ = 10^{-7}$.

However, these are the respective minimal values for both $C$ and $γ$.

Here is a look at the accuracy of all models from the Grid Search sorted by the hyperparameters.

In [21]:
df_grid = pd.DataFrame(data = grid.cv_results_['mean_test_score'].reshape(10, 7),
                       index = C_list,
                       columns = gamma_list)
df_grid
Out[21]:
1.000000e-07 1.000000e-06 1.000000e-05 1.000000e-04 1.000000e-03 1.000000e-02 1.000000e-01
0.00001 0.75147 0.75147 0.751470 0.751470 0.751470 0.751470 0.751470
0.00010 0.75147 0.75147 0.751470 0.751470 0.751470 0.751470 0.751470
0.00100 0.75147 0.75147 0.751470 0.751470 0.751470 0.751470 0.751470
0.01000 0.75147 0.75147 0.751470 0.751470 0.751470 0.751470 0.751470
0.10000 0.75147 0.75147 0.751470 0.751470 0.751470 0.751470 0.751470
1.00000 0.75147 0.75147 0.751470 0.751470 0.751470 0.751470 0.708282
10.00000 0.75147 0.75147 0.751470 0.751470 0.751470 0.633126 0.647867
100.00000 0.75147 0.75147 0.751470 0.751470 0.615942 0.635901 0.647867
1000.00000 0.75147 0.75147 0.751470 0.633333 0.627329 0.653416 0.670973
10000.00000 0.75147 0.75147 0.636232 0.639130 0.633043 0.676770 0.673954

The accuracy scores from all combinations of $C$ (rows) and $γ$ (columns) are shown above. We can see that the vast majority of cells except those in the bottom right corner have the same accuracy score to 6 decimal places, that is, $0.751470$.

I used $C = 10^{-5}$ and $γ = 10^{-7}$ for the final model.

In [22]:
svm_model_final = svm.SVC(C = 1e-5, gamma = 1e-7, kernel = 'rbf').fit(X, y)
metrics.accuracy_score(y, svm_model_final.predict(X))
Out[22]:
0.7514450867052023

5. Logistic Regression

For Logistic Regression, I choose a 5-fold cross-validation split, varying $C$ from $10^{-5}$ to $10^5$ by powers of $10$.

In [23]:
train_scores, valid_scores = VC(LR(),
                                X, y,
                                param_name = 'C',
                                param_range = C_list,
                                cv = 5)

train_lr = []
valid_lr = []

for c in range(len(C_list)) :
    train_lr.append(sum(train_scores[c]) / 5)
    valid_lr.append(sum(valid_scores[c]) / 5)
In [24]:
fig, ax = plt.subplots(figsize=(12, 8))
ax.plot(C_list,
        train_lr,
        c = 'b',
        lw = 3,
        label = "Train Set")
ax.plot(C_list,
        valid_lr,
        c = 'g',
        lw = 3,
        label = "Validation Set")

ax.set_title("Train and Test Set Accuracies of Logistic Regression for C", fontsize = 22)
ax.set_xlabel(xlabel = "Hyperparameter C value", fontsize = 18)
ax.set_xscale('log')
ax.set_ylabel(ylabel = "Accuracy", fontsize = 18)
ax.tick_params(axis = 'both', labelsize = 16)
ax.legend(fontsize = 18, loc = 'center right')
plt.figtext(0.9, 0, "5-fold cross-validation values were averaged.", ha = 'right', fontsize = 12);

Any $C ≤ 10^{-2}$ from our graph yields an accuracy of approximately 0.75 for the training and test sets.

In [25]:
lr_model_final = LR(C = 1e-4).fit(X,y)
metrics.accuracy_score(y, lr_model_final.predict(X))
Out[25]:
0.7514450867052023

IV. Test Set Results

1. Packages

In [26]:
from sklearn.metrics import jaccard_score as js
from sklearn.metrics import f1_score as fs
from sklearn.metrics import log_loss as ll

2. Test Set

The same steps are repeated from the train set.

a. Load

In [27]:
url = "https://s3-api.us-geo.objectstorage.softlayer.net/cf-courses-data/CognitiveClass/ML0101ENv3/labs/loan_test.csv"
filename = wget.download(url)
df_test = pd.read_csv(filename)
df_test.head()
100% [................................................................................] 3642 / 3642
Out[27]:
Unnamed: 0 Unnamed: 0.1 loan_status Principal terms effective_date due_date age education Gender
0 1 1 PAIDOFF 1000 30 9/8/2016 10/7/2016 50 Bechalor female
1 5 5 PAIDOFF 300 7 9/9/2016 9/15/2016 35 Master or Above male
2 21 21 PAIDOFF 1000 30 9/10/2016 10/9/2016 43 High School or Below female
3 24 24 PAIDOFF 1000 30 9/10/2016 10/9/2016 26 college male
4 35 35 PAIDOFF 800 15 9/11/2016 9/25/2016 29 Bechalor male

b. Pre-Process

In [28]:
df_test['effective_date'] = pd.to_datetime(df_test['effective_date'])
df_test['dayofweek'] = df_test['effective_date'].dt.dayofweek
df_test['Weekend'] = df_test['dayofweek'].apply(lambda x: 1 if (x>3)  else 0)
df_test['Gender'].replace(to_replace = ['male', 'female'], value = [0, 1], inplace=True)

c. Feature Selection

In [29]:
Feature_test = df_test[['Principal','terms','age','Gender','Weekend']]
Feature_test = pd.concat([Feature_test, pd.get_dummies(df_test['education'])], axis = 1)
Feature_test.drop(['Master or Above'], axis = 1, inplace = True)
Feature_test.rename(columns = {'terms': 'Terms',
                               'age': 'Age',
                               'Bechalor': 'Bachelor',
                               'college': 'College'},
                    inplace = True)

d. Normalize Data

In [30]:
X_test = Feature_test
y_test = df_test['loan_status']
X_test = preprocessing.StandardScaler().fit(X_test).transform(X_test)

3. Scoring

Using the test set, the Jaccard score and F1 score will be calculated for each of the K-Nearest Neighbors model, Decision Tree (Random Forest) model, Support Vector Machine model, and Logistic Regression model. In addition, the log loss will be calculated for the Logistic Regression model.

In [31]:
#Initialize lists.
models = [knn_model_final, dtrf_model_final, svm_model_final, lr_model_final]
jaccard = []
f1s = []
log_loss = ["NA", "NA", "NA"]

#Calculate scores from each model and append to lists.
for model in models :
    y_pred = model.predict(X_test)
    jaccard.append(js(y_test, y_pred, average = 'micro'))
    f1s.append(fs(y_test, y_pred, average = 'micro'))
    if model == lr_model_final :
        log_loss.append(ll(y_test, model.predict_proba(X_test)))

#Output dataframe.
data = {"Algorithm": ["K-Nearest Neighbors", "Decision Tree/Random Forest", "Support Vector Machine", "Logistic Regression"],
        "Jaccard": jaccard,
        "F1-Score": f1s,
        "Log Loss": log_loss}

report = pd.DataFrame(data = data)
report.set_index("Algorithm")
Out[31]:
Jaccard F1-Score Log Loss
Algorithm
K-Nearest Neighbors 0.636364 0.777778 NA
Decision Tree/Random Forest 0.588235 0.740741 NA
Support Vector Machine 0.588235 0.740741 NA
Logistic Regression 0.588235 0.740741 0.571405

It is important to note that this was an extremely small data set, with only 346 observations in the train set and 54 observations in the test set. A larger sample would possible give better scores and accuracy.

V. Appendix

Complete original train set.

In [32]:
pd.set_option("display.max_rows", None, "display.max_columns", None)

pd.read_csv('loan_train.csv')
Out[32]:
Unnamed: 0 Unnamed: 0.1 loan_status Principal terms effective_date due_date age education Gender
0 0 0 PAIDOFF 1000 30 9/8/2016 10/7/2016 45 High School or Below male
1 2 2 PAIDOFF 1000 30 9/8/2016 10/7/2016 33 Bechalor female
2 3 3 PAIDOFF 1000 15 9/8/2016 9/22/2016 27 college male
3 4 4 PAIDOFF 1000 30 9/9/2016 10/8/2016 28 college female
4 6 6 PAIDOFF 1000 30 9/9/2016 10/8/2016 29 college male
5 7 7 PAIDOFF 1000 30 9/9/2016 10/8/2016 36 college male
6 8 8 PAIDOFF 1000 30 9/9/2016 10/8/2016 28 college male
7 9 9 PAIDOFF 800 15 9/10/2016 9/24/2016 26 college male
8 10 10 PAIDOFF 300 7 9/10/2016 9/16/2016 29 college male
9 11 11 PAIDOFF 1000 15 9/10/2016 10/9/2016 39 High School or Below male
10 12 12 PAIDOFF 1000 30 9/10/2016 10/9/2016 26 college male
11 13 13 PAIDOFF 900 7 9/10/2016 9/16/2016 26 college female
12 14 14 PAIDOFF 1000 7 9/10/2016 9/16/2016 27 High School or Below male
13 15 15 PAIDOFF 800 15 9/10/2016 9/24/2016 26 college male
14 16 16 PAIDOFF 1000 30 9/10/2016 10/9/2016 40 High School or Below male
15 17 17 PAIDOFF 1000 15 9/10/2016 9/24/2016 32 High School or Below male
16 18 18 PAIDOFF 1000 30 9/10/2016 10/9/2016 32 High School or Below male
17 19 19 PAIDOFF 800 30 9/10/2016 10/9/2016 26 college male
18 20 20 PAIDOFF 1000 30 9/10/2016 10/9/2016 26 college male
19 22 22 PAIDOFF 1000 30 9/10/2016 10/9/2016 25 High School or Below male
20 23 23 PAIDOFF 1000 15 9/10/2016 9/24/2016 26 college male
21 25 25 PAIDOFF 1000 30 9/10/2016 10/9/2016 29 High School or Below male
22 26 26 PAIDOFF 800 15 9/10/2016 9/24/2016 39 Bechalor male
23 27 27 PAIDOFF 1000 15 9/10/2016 9/24/2016 34 Bechalor male
24 28 28 PAIDOFF 1000 30 9/11/2016 10/10/2016 31 college male
25 29 29 PAIDOFF 1000 30 9/11/2016 10/10/2016 33 college male
26 30 30 PAIDOFF 800 15 9/11/2016 9/25/2016 33 High School or Below male
27 31 31 PAIDOFF 1000 30 9/11/2016 10/10/2016 37 college male
28 32 32 PAIDOFF 1000 30 9/11/2016 10/10/2016 27 college male
29 33 33 PAIDOFF 1000 30 9/11/2016 10/10/2016 37 college male
30 34 34 PAIDOFF 800 15 9/11/2016 9/25/2016 33 college male
31 36 36 PAIDOFF 1000 30 9/11/2016 10/10/2016 27 High School or Below male
32 39 39 PAIDOFF 1000 30 9/11/2016 10/10/2016 21 Bechalor male
33 40 40 PAIDOFF 1000 15 9/11/2016 9/25/2016 32 college female
34 41 41 PAIDOFF 800 15 9/11/2016 9/25/2016 30 college male
35 42 42 PAIDOFF 1000 7 9/11/2016 9/24/2016 31 Bechalor male
36 43 43 PAIDOFF 1000 15 9/11/2016 9/25/2016 30 college male
37 44 44 PAIDOFF 1000 15 9/11/2016 9/25/2016 24 Bechalor female
38 45 45 PAIDOFF 800 7 9/11/2016 9/17/2016 35 High School or Below male
39 46 46 PAIDOFF 1000 30 9/11/2016 10/10/2016 22 High School or Below male
40 47 47 PAIDOFF 1000 30 9/11/2016 10/10/2016 32 college male
41 49 49 PAIDOFF 800 15 9/11/2016 9/25/2016 50 High School or Below male
42 51 51 PAIDOFF 1000 30 9/11/2016 10/10/2016 35 Bechalor female
43 52 52 PAIDOFF 800 15 9/11/2016 9/25/2016 35 Bechalor female
44 53 53 PAIDOFF 1000 30 9/11/2016 10/10/2016 34 High School or Below male
45 54 54 PAIDOFF 1000 30 9/11/2016 10/10/2016 21 High School or Below male
46 55 55 PAIDOFF 1000 15 9/11/2016 9/25/2016 25 college male
47 56 56 PAIDOFF 1000 30 9/11/2016 10/10/2016 27 High School or Below male
48 57 57 PAIDOFF 1000 30 9/11/2016 10/10/2016 26 Bechalor male
49 58 58 PAIDOFF 800 15 9/11/2016 9/25/2016 44 High School or Below female
50 59 59 PAIDOFF 800 15 9/11/2016 9/25/2016 39 Master or Above male
51 60 60 PAIDOFF 1000 30 9/11/2016 10/10/2016 34 Bechalor male
52 62 62 PAIDOFF 1000 30 9/11/2016 10/10/2016 34 High School or Below male
53 63 63 PAIDOFF 1000 30 9/11/2016 10/10/2016 45 college male
54 65 65 PAIDOFF 900 15 9/11/2016 9/25/2016 28 college male
55 66 66 PAIDOFF 1000 30 9/11/2016 10/10/2016 28 Bechalor male
56 67 67 PAIDOFF 1000 30 9/11/2016 10/10/2016 37 High School or Below male
57 69 69 PAIDOFF 1000 30 9/11/2016 10/10/2016 43 Bechalor male
58 70 70 PAIDOFF 800 15 9/11/2016 9/25/2016 29 college male
59 71 71 PAIDOFF 800 15 9/11/2016 9/25/2016 29 High School or Below male
60 72 72 PAIDOFF 1000 30 9/11/2016 10/10/2016 33 Bechalor female
61 73 73 PAIDOFF 1000 15 9/11/2016 9/25/2016 34 college male
62 74 74 PAIDOFF 1000 15 9/11/2016 9/25/2016 25 college male
63 75 75 PAIDOFF 1000 30 9/11/2016 10/10/2016 30 High School or Below male
64 77 77 PAIDOFF 1000 30 9/11/2016 10/10/2016 35 college male
65 79 79 PAIDOFF 1000 30 9/11/2016 10/10/2016 44 High School or Below female
66 80 80 PAIDOFF 1000 30 9/11/2016 10/10/2016 28 High School or Below male
67 81 81 PAIDOFF 1000 7 9/11/2016 9/17/2016 25 college male
68 82 82 PAIDOFF 1000 15 9/11/2016 9/25/2016 29 college male
69 83 83 PAIDOFF 800 15 9/11/2016 9/25/2016 33 college male
70 86 86 PAIDOFF 1000 30 9/11/2016 10/10/2016 24 High School or Below female
71 87 87 PAIDOFF 1000 30 9/11/2016 10/10/2016 27 college female
72 89 89 PAIDOFF 800 15 9/11/2016 9/25/2016 46 High School or Below female
73 90 90 PAIDOFF 800 15 9/11/2016 9/25/2016 34 college female
74 92 92 PAIDOFF 800 15 9/11/2016 9/25/2016 38 High School or Below male
75 93 93 PAIDOFF 800 15 9/11/2016 9/25/2016 27 High School or Below male
76 94 94 PAIDOFF 1000 30 9/11/2016 10/10/2016 33 High School or Below male
77 95 95 PAIDOFF 1000 30 9/11/2016 10/10/2016 36 college male
78 97 97 PAIDOFF 1000 30 9/11/2016 10/10/2016 34 college male
79 98 98 PAIDOFF 1000 30 9/11/2016 10/10/2016 22 High School or Below male
80 99 99 PAIDOFF 1000 30 9/11/2016 10/10/2016 31 Bechalor female
81 101 101 PAIDOFF 800 15 9/11/2016 9/25/2016 38 college male
82 102 102 PAIDOFF 1000 30 9/11/2016 10/10/2016 30 college male
83 103 103 PAIDOFF 1000 15 9/11/2016 9/25/2016 45 High School or Below male
84 104 104 PAIDOFF 1000 15 9/11/2016 9/25/2016 35 college male
85 106 106 PAIDOFF 1000 30 9/11/2016 10/10/2016 31 High School or Below male
86 107 107 PAIDOFF 1000 30 9/11/2016 10/10/2016 31 High School or Below male
87 108 108 PAIDOFF 1000 30 9/11/2016 10/10/2016 28 college male
88 109 109 PAIDOFF 1000 7 9/11/2016 9/24/2016 29 college male
89 110 110 PAIDOFF 800 15 9/11/2016 9/25/2016 29 college male
90 111 111 PAIDOFF 1000 30 9/11/2016 11/9/2016 27 college female
91 112 112 PAIDOFF 1000 30 9/11/2016 10/10/2016 27 college male
92 113 113 PAIDOFF 1000 30 9/11/2016 10/10/2016 33 college male
93 114 114 PAIDOFF 1000 30 9/11/2016 10/10/2016 28 college male
94 115 115 PAIDOFF 1000 15 9/11/2016 9/25/2016 25 High School or Below male
95 116 116 PAIDOFF 1000 30 9/11/2016 10/10/2016 40 college male
96 117 117 PAIDOFF 1000 30 9/11/2016 10/10/2016 23 High School or Below male
97 118 118 PAIDOFF 1000 30 9/11/2016 10/10/2016 35 Bechalor male
98 119 119 PAIDOFF 800 15 9/11/2016 9/25/2016 24 college male
99 120 120 PAIDOFF 1000 30 9/11/2016 10/10/2016 34 college male
100 121 121 PAIDOFF 1000 30 9/11/2016 10/10/2016 22 High School or Below male
101 122 122 PAIDOFF 1000 15 9/11/2016 10/25/2016 20 college male
102 123 123 PAIDOFF 1000 15 9/11/2016 9/25/2016 23 college male
103 124 124 PAIDOFF 1000 30 9/11/2016 10/10/2016 33 college male
104 125 125 PAIDOFF 1000 30 9/11/2016 10/10/2016 26 college male
105 126 126 PAIDOFF 1000 15 9/11/2016 9/25/2016 28 High School or Below male
106 127 127 PAIDOFF 800 15 9/11/2016 9/25/2016 43 High School or Below male
107 128 128 PAIDOFF 1000 15 9/11/2016 9/25/2016 34 Bechalor male
108 129 129 PAIDOFF 1000 30 9/11/2016 10/10/2016 38 Bechalor male
109 130 130 PAIDOFF 1000 15 9/11/2016 9/25/2016 26 High School or Below male
110 131 131 PAIDOFF 800 15 9/11/2016 9/25/2016 43 High School or Below male
111 132 132 PAIDOFF 1000 30 9/11/2016 10/10/2016 26 High School or Below male
112 133 133 PAIDOFF 1000 30 9/11/2016 10/10/2016 33 college female
113 134 134 PAIDOFF 800 15 9/11/2016 9/25/2016 24 college male
114 135 135 PAIDOFF 1000 30 9/11/2016 10/10/2016 30 High School or Below male
115 136 136 PAIDOFF 800 15 9/11/2016 9/25/2016 32 High School or Below female
116 137 137 PAIDOFF 1000 15 9/11/2016 10/25/2016 22 college male
117 138 138 PAIDOFF 1000 15 9/11/2016 9/25/2016 47 High School or Below male
118 139 139 PAIDOFF 1000 30 9/11/2016 10/10/2016 20 High School or Below male
119 140 140 PAIDOFF 1000 30 9/11/2016 10/10/2016 28 High School or Below male
120 141 141 PAIDOFF 800 15 9/11/2016 9/25/2016 35 college male
121 143 143 PAIDOFF 800 15 9/11/2016 9/25/2016 33 college female
122 144 144 PAIDOFF 1000 30 9/11/2016 10/10/2016 30 High School or Below male
123 145 145 PAIDOFF 1000 15 9/11/2016 9/25/2016 31 college male
124 146 146 PAIDOFF 1000 30 9/11/2016 11/9/2016 26 college female
125 148 148 PAIDOFF 1000 15 9/12/2016 9/26/2016 26 Bechalor male
126 149 149 PAIDOFF 800 15 9/12/2016 9/26/2016 35 Bechalor male
127 151 151 PAIDOFF 800 15 9/12/2016 9/26/2016 23 college male
128 152 152 PAIDOFF 500 15 9/12/2016 9/26/2016 23 college female
129 153 153 PAIDOFF 1000 15 9/12/2016 9/26/2016 30 college male
130 154 154 PAIDOFF 1000 30 9/12/2016 10/11/2016 34 college male
131 155 155 PAIDOFF 1000 30 9/12/2016 10/11/2016 36 High School or Below female
132 157 157 PAIDOFF 800 15 9/12/2016 9/26/2016 29 High School or Below male
133 158 158 PAIDOFF 1000 15 9/12/2016 9/26/2016 28 college female
134 159 159 PAIDOFF 1000 30 9/12/2016 10/11/2016 27 High School or Below male
135 160 160 PAIDOFF 1000 15 9/12/2016 9/26/2016 24 High School or Below male
136 161 161 PAIDOFF 800 15 9/12/2016 9/26/2016 31 Bechalor male
137 162 162 PAIDOFF 1000 30 9/12/2016 10/11/2016 28 High School or Below male
138 163 163 PAIDOFF 1000 15 9/12/2016 9/26/2016 27 college female
139 164 164 PAIDOFF 1000 15 9/12/2016 9/26/2016 25 High School or Below male
140 165 165 PAIDOFF 1000 30 9/12/2016 11/10/2016 24 High School or Below male
141 166 166 PAIDOFF 1000 30 9/12/2016 10/11/2016 28 college male
142 168 168 PAIDOFF 1000 15 9/12/2016 9/26/2016 35 High School or Below male
143 170 170 PAIDOFF 1000 15 9/12/2016 9/26/2016 38 High School or Below male
144 171 171 PAIDOFF 1000 30 9/12/2016 10/11/2016 29 college male
145 172 172 PAIDOFF 800 15 9/12/2016 9/26/2016 35 High School or Below male
146 173 173 PAIDOFF 1000 30 9/12/2016 10/11/2016 24 college male
147 174 174 PAIDOFF 800 15 9/12/2016 9/26/2016 39 High School or Below male
148 175 175 PAIDOFF 800 15 9/12/2016 9/26/2016 25 college male
149 176 176 PAIDOFF 1000 30 9/12/2016 10/11/2016 38 High School or Below male
150 177 177 PAIDOFF 1000 30 9/12/2016 10/11/2016 30 college male
151 178 178 PAIDOFF 1000 30 9/12/2016 10/11/2016 21 High School or Below male
152 180 180 PAIDOFF 1000 15 9/12/2016 9/26/2016 31 High School or Below female
153 181 181 PAIDOFF 300 7 9/12/2016 9/18/2016 29 High School or Below male
154 182 182 PAIDOFF 1000 30 9/12/2016 10/11/2016 35 High School or Below male
155 183 183 PAIDOFF 800 15 9/12/2016 9/26/2016 30 High School or Below male
156 184 184 PAIDOFF 1000 30 9/12/2016 10/11/2016 27 High School or Below male
157 185 185 PAIDOFF 1000 30 9/12/2016 10/11/2016 31 High School or Below female
158 187 187 PAIDOFF 1000 15 9/12/2016 9/26/2016 34 High School or Below male
159 188 188 PAIDOFF 800 15 9/12/2016 9/26/2016 28 college male
160 189 189 PAIDOFF 800 15 9/12/2016 9/26/2016 42 college male
161 190 190 PAIDOFF 1000 30 9/12/2016 10/11/2016 32 college male
162 191 191 PAIDOFF 1000 30 9/12/2016 10/11/2016 30 High School or Below male
163 192 192 PAIDOFF 1000 15 9/12/2016 9/26/2016 25 High School or Below female
164 193 193 PAIDOFF 1000 30 9/12/2016 10/11/2016 27 High School or Below female
165 194 194 PAIDOFF 800 15 9/12/2016 9/26/2016 21 college male
166 195 195 PAIDOFF 1000 30 9/12/2016 10/11/2016 24 college male
167 197 197 PAIDOFF 1000 15 9/12/2016 9/26/2016 40 college male
168 198 198 PAIDOFF 1000 30 9/12/2016 10/11/2016 29 High School or Below male
169 200 200 PAIDOFF 1000 15 9/12/2016 9/26/2016 30 college male
170 201 201 PAIDOFF 1000 30 9/12/2016 10/11/2016 26 High School or Below female
171 203 203 PAIDOFF 800 15 9/12/2016 9/26/2016 27 college male
172 204 204 PAIDOFF 1000 30 9/12/2016 10/11/2016 20 college male
173 205 205 PAIDOFF 1000 7 9/12/2016 9/18/2016 26 Bechalor female
174 206 206 PAIDOFF 1000 30 9/12/2016 11/10/2016 26 college male
175 207 207 PAIDOFF 1000 30 9/12/2016 10/11/2016 27 college male
176 208 208 PAIDOFF 300 7 9/12/2016 9/18/2016 23 High School or Below male
177 209 209 PAIDOFF 1000 30 9/12/2016 10/11/2016 39 High School or Below male
178 210 210 PAIDOFF 1000 15 9/12/2016 9/26/2016 27 High School or Below male
179 211 211 PAIDOFF 1000 30 9/12/2016 10/11/2016 30 High School or Below male
180 212 212 PAIDOFF 1000 30 9/12/2016 10/11/2016 33 High School or Below female
181 213 213 PAIDOFF 1000 30 9/12/2016 10/11/2016 27 High School or Below male
182 214 214 PAIDOFF 1000 30 9/12/2016 10/11/2016 35 High School or Below male
183 215 215 PAIDOFF 1000 30 9/12/2016 11/10/2016 29 college female
184 216 216 PAIDOFF 1000 15 9/12/2016 9/26/2016 50 High School or Below male
185 217 217 PAIDOFF 800 15 9/12/2016 9/26/2016 31 High School or Below female
186 218 218 PAIDOFF 1000 15 9/12/2016 9/26/2016 31 High School or Below male
187 219 219 PAIDOFF 1000 30 9/12/2016 10/11/2016 29 High School or Below male
188 220 220 PAIDOFF 1000 15 9/12/2016 9/26/2016 35 college male
189 221 221 PAIDOFF 1000 30 9/12/2016 10/11/2016 39 college male
190 223 223 PAIDOFF 1000 15 9/12/2016 9/26/2016 30 High School or Below male
191 224 224 PAIDOFF 1000 30 9/12/2016 10/11/2016 33 Bechalor male
192 225 225 PAIDOFF 1000 30 9/12/2016 10/11/2016 26 High School or Below male
193 226 226 PAIDOFF 1000 15 9/12/2016 9/26/2016 25 High School or Below male
194 227 227 PAIDOFF 800 15 9/12/2016 9/26/2016 37 Bechalor male
195 228 228 PAIDOFF 800 15 9/12/2016 9/26/2016 26 High School or Below male
196 229 229 PAIDOFF 800 15 9/12/2016 9/26/2016 26 college male
197 230 230 PAIDOFF 1000 15 9/12/2016 10/26/2016 27 college male
198 231 231 PAIDOFF 1000 7 9/12/2016 9/25/2016 34 college female
199 232 232 PAIDOFF 1000 30 9/12/2016 10/11/2016 37 college male
200 233 233 PAIDOFF 1000 30 9/12/2016 10/11/2016 36 High School or Below male
201 234 234 PAIDOFF 800 15 9/12/2016 9/26/2016 33 High School or Below male
202 235 235 PAIDOFF 1000 30 9/12/2016 10/11/2016 30 High School or Below male
203 237 237 PAIDOFF 800 15 9/12/2016 9/26/2016 36 High School or Below male
204 238 238 PAIDOFF 1000 15 9/12/2016 10/11/2016 29 college male
205 240 240 PAIDOFF 1000 30 9/12/2016 10/11/2016 32 High School or Below male
206 241 241 PAIDOFF 1000 15 9/12/2016 9/26/2016 29 High School or Below female
207 242 242 PAIDOFF 800 15 9/12/2016 9/26/2016 36 Bechalor male
208 243 243 PAIDOFF 800 15 9/12/2016 9/26/2016 30 High School or Below female
209 244 244 PAIDOFF 1000 7 9/13/2016 9/19/2016 31 college male
210 245 245 PAIDOFF 1000 30 9/13/2016 10/12/2016 19 High School or Below female
211 246 246 PAIDOFF 800 15 9/13/2016 9/27/2016 26 college male
212 247 247 PAIDOFF 800 15 9/13/2016 9/27/2016 34 High School or Below male
213 248 248 PAIDOFF 1000 30 9/13/2016 10/12/2016 35 High School or Below male
214 249 249 PAIDOFF 1000 15 9/13/2016 9/27/2016 35 Bechalor female
215 250 250 PAIDOFF 800 15 9/13/2016 9/27/2016 38 college male
216 253 253 PAIDOFF 500 7 9/13/2016 9/19/2016 22 High School or Below male
217 254 254 PAIDOFF 1000 30 9/13/2016 10/12/2016 32 college male
218 255 255 PAIDOFF 1000 30 9/13/2016 10/12/2016 31 college male
219 256 256 PAIDOFF 800 15 9/13/2016 9/27/2016 28 college male
220 257 257 PAIDOFF 1000 15 9/13/2016 9/27/2016 37 college female
221 258 258 PAIDOFF 1000 7 9/13/2016 9/19/2016 25 college male
222 259 259 PAIDOFF 1000 30 9/13/2016 10/12/2016 19 High School or Below male
223 260 260 PAIDOFF 800 15 9/13/2016 9/27/2016 51 college male
224 261 261 PAIDOFF 1000 15 9/13/2016 9/27/2016 29 High School or Below male
225 262 262 PAIDOFF 800 30 9/13/2016 10/12/2016 23 college female
226 263 263 PAIDOFF 1000 15 9/13/2016 9/27/2016 30 High School or Below male
227 265 265 PAIDOFF 1000 15 9/13/2016 9/27/2016 34 Bechalor female
228 266 266 PAIDOFF 800 15 9/13/2016 9/27/2016 31 Bechalor female
229 267 267 PAIDOFF 1000 15 9/14/2016 9/28/2016 24 High School or Below male
230 268 268 PAIDOFF 1000 30 9/14/2016 10/13/2016 42 High School or Below male
231 269 269 PAIDOFF 800 30 9/14/2016 10/13/2016 40 college female
232 270 270 PAIDOFF 1000 30 9/14/2016 10/13/2016 29 High School or Below male
233 271 271 PAIDOFF 1000 30 9/14/2016 10/13/2016 32 college female
234 272 272 PAIDOFF 1000 30 9/14/2016 11/12/2016 28 college male
235 273 273 PAIDOFF 1000 30 9/14/2016 10/13/2016 35 High School or Below male
236 274 274 PAIDOFF 1000 30 9/14/2016 10/13/2016 30 Bechalor male
237 275 275 PAIDOFF 800 15 9/14/2016 9/28/2016 44 college male
238 276 276 PAIDOFF 800 15 9/14/2016 9/28/2016 37 High School or Below male
239 277 277 PAIDOFF 1000 30 9/14/2016 10/13/2016 31 college male
240 278 278 PAIDOFF 800 15 9/14/2016 9/28/2016 36 college male
241 279 279 PAIDOFF 800 30 9/14/2016 10/13/2016 31 college male
242 280 280 PAIDOFF 800 15 9/14/2016 9/28/2016 42 High School or Below male
243 281 281 PAIDOFF 1000 15 9/14/2016 9/28/2016 28 Bechalor male
244 282 282 PAIDOFF 1000 30 9/14/2016 10/13/2016 30 college male
245 283 283 PAIDOFF 1000 30 9/14/2016 10/13/2016 30 High School or Below male
246 284 284 PAIDOFF 1000 15 9/14/2016 9/28/2016 24 Bechalor male
247 285 285 PAIDOFF 1000 30 9/14/2016 11/12/2016 34 Bechalor male
248 286 286 PAIDOFF 1000 30 9/14/2016 10/13/2016 29 college male
249 288 288 PAIDOFF 1000 30 9/14/2016 10/13/2016 34 Bechalor male
250 289 289 PAIDOFF 800 15 9/14/2016 9/28/2016 28 High School or Below male
251 290 290 PAIDOFF 1000 15 9/14/2016 9/28/2016 30 college female
252 291 291 PAIDOFF 1000 30 9/14/2016 10/13/2016 41 High School or Below male
253 292 292 PAIDOFF 1000 30 9/14/2016 10/13/2016 29 college male
254 293 293 PAIDOFF 1000 30 9/14/2016 10/13/2016 37 High School or Below male
255 294 294 PAIDOFF 1000 30 9/14/2016 10/13/2016 36 Bechalor male
256 296 296 PAIDOFF 800 15 9/14/2016 9/28/2016 27 college male
257 297 297 PAIDOFF 1000 30 9/14/2016 10/13/2016 29 High School or Below male
258 298 298 PAIDOFF 1000 30 9/14/2016 10/13/2016 40 High School or Below male
259 299 299 PAIDOFF 1000 30 9/14/2016 10/13/2016 28 college male
260 300 300 COLLECTION 1000 15 9/9/2016 9/23/2016 29 college male
261 301 301 COLLECTION 1000 30 9/9/2016 10/8/2016 37 High School or Below male
262 303 303 COLLECTION 800 15 9/9/2016 9/23/2016 27 college male
263 304 304 COLLECTION 800 15 9/9/2016 9/23/2016 24 Bechalor male
264 306 306 COLLECTION 800 15 9/10/2016 10/9/2016 28 college male
265 307 307 COLLECTION 1000 30 9/10/2016 10/9/2016 40 High School or Below male
266 308 308 COLLECTION 1000 30 9/10/2016 10/9/2016 33 college male
267 312 312 COLLECTION 1000 30 9/10/2016 10/9/2016 27 High School or Below male
268 314 314 COLLECTION 1000 30 9/10/2016 10/9/2016 24 college male
269 316 316 COLLECTION 1000 30 9/10/2016 10/9/2016 30 High School or Below male
270 317 317 COLLECTION 1000 15 9/10/2016 9/24/2016 29 High School or Below male
271 318 318 COLLECTION 1000 30 9/10/2016 10/9/2016 22 Bechalor male
272 319 319 COLLECTION 1000 15 9/10/2016 9/24/2016 24 Bechalor male
273 320 320 COLLECTION 1000 30 9/10/2016 10/9/2016 25 college male
274 321 321 COLLECTION 1000 30 9/10/2016 10/9/2016 28 High School or Below male
275 322 322 COLLECTION 1000 30 9/10/2016 10/9/2016 37 college male
276 323 323 COLLECTION 800 15 9/10/2016 9/24/2016 32 college male
277 324 324 COLLECTION 1000 15 9/10/2016 9/24/2016 34 college male
278 325 325 COLLECTION 1000 30 9/11/2016 10/10/2016 28 Bechalor male
279 326 326 COLLECTION 800 15 9/11/2016 9/25/2016 35 Bechalor male
280 327 327 COLLECTION 1000 30 9/11/2016 11/9/2016 27 college male
281 329 329 COLLECTION 1000 30 9/11/2016 10/10/2016 44 Bechalor male
282 330 330 COLLECTION 1000 15 9/11/2016 10/25/2016 31 college male
283 332 332 COLLECTION 1000 30 9/11/2016 10/10/2016 21 High School or Below male
284 333 333 COLLECTION 1000 30 9/11/2016 10/10/2016 30 High School or Below female
285 334 334 COLLECTION 1000 30 9/11/2016 10/10/2016 38 college female
286 335 335 COLLECTION 1000 30 9/11/2016 10/10/2016 34 High School or Below male
287 336 336 COLLECTION 1000 30 9/11/2016 10/10/2016 31 college male
288 337 337 COLLECTION 1000 30 9/11/2016 10/10/2016 23 High School or Below male
289 338 338 COLLECTION 1000 15 9/11/2016 9/25/2016 27 college female
290 339 339 COLLECTION 1000 15 9/11/2016 9/25/2016 39 High School or Below male
291 340 340 COLLECTION 1000 30 9/11/2016 10/10/2016 30 High School or Below female
292 341 341 COLLECTION 1000 30 9/11/2016 10/10/2016 25 college male
293 342 342 COLLECTION 1000 15 9/11/2016 9/25/2016 50 Master or Above male
294 343 343 COLLECTION 1000 30 9/11/2016 10/10/2016 23 High School or Below male
295 344 344 COLLECTION 800 15 9/11/2016 9/25/2016 38 Bechalor male
296 345 345 COLLECTION 1000 30 9/11/2016 10/10/2016 27 High School or Below male
297 346 346 COLLECTION 1000 30 9/11/2016 11/9/2016 31 High School or Below male
298 347 347 COLLECTION 800 15 9/11/2016 9/25/2016 40 college male
299 350 350 COLLECTION 1000 30 9/11/2016 10/10/2016 26 High School or Below male
300 351 351 COLLECTION 1000 15 9/11/2016 9/25/2016 25 college male
301 352 352 COLLECTION 1000 30 9/11/2016 10/10/2016 35 High School or Below male
302 353 353 COLLECTION 1000 30 9/11/2016 10/10/2016 41 High School or Below male
303 354 354 COLLECTION 1000 30 9/11/2016 10/10/2016 37 High School or Below male
304 355 355 COLLECTION 1000 15 9/11/2016 10/10/2016 34 college male
305 356 356 COLLECTION 1000 30 9/11/2016 10/10/2016 45 High School or Below male
306 357 357 COLLECTION 1000 30 9/11/2016 10/10/2016 26 Bechalor male
307 358 358 COLLECTION 1000 30 9/11/2016 10/10/2016 32 college male
308 359 359 COLLECTION 1000 30 9/11/2016 10/10/2016 28 High School or Below male
309 360 360 COLLECTION 1000 30 9/11/2016 10/10/2016 34 college male
310 361 361 COLLECTION 800 15 9/11/2016 9/25/2016 29 High School or Below male
311 362 362 COLLECTION 1000 30 9/11/2016 10/10/2016 26 High School or Below male
312 363 363 COLLECTION 1000 15 9/11/2016 9/25/2016 26 college male
313 364 364 COLLECTION 800 15 9/11/2016 9/25/2016 22 college male
314 365 365 COLLECTION 1000 30 9/11/2016 10/10/2016 27 High School or Below female
315 366 366 COLLECTION 800 30 9/11/2016 10/10/2016 33 High School or Below male
316 367 367 COLLECTION 800 15 9/11/2016 9/25/2016 28 Bechalor male
317 368 368 COLLECTION 1000 30 9/11/2016 10/10/2016 24 college male
318 371 371 COLLECTION 1000 30 9/11/2016 10/10/2016 18 college male
319 372 372 COLLECTION 800 15 9/11/2016 9/25/2016 25 High School or Below male
320 373 373 COLLECTION 1000 15 9/11/2016 9/25/2016 40 High School or Below male
321 374 374 COLLECTION 1000 30 9/11/2016 10/10/2016 29 college male
322 375 375 COLLECTION 800 15 9/11/2016 9/25/2016 26 High School or Below female
323 376 376 COLLECTION 1000 15 9/11/2016 9/25/2016 30 college male
324 377 377 COLLECTION 1000 30 9/11/2016 10/10/2016 33 college male
325 378 378 COLLECTION 1000 30 9/11/2016 10/10/2016 30 college male
326 379 379 COLLECTION 1000 30 9/11/2016 10/10/2016 32 college male
327 380 380 COLLECTION 1000 30 9/11/2016 10/10/2016 25 High School or Below male
328 381 381 COLLECTION 800 15 9/11/2016 9/25/2016 35 High School or Below male
329 382 382 COLLECTION 1000 15 9/11/2016 9/25/2016 30 Bechalor male
330 383 383 COLLECTION 1000 30 9/11/2016 10/10/2016 26 High School or Below male
331 384 384 COLLECTION 1000 30 9/11/2016 10/10/2016 29 High School or Below male
332 385 385 COLLECTION 1000 30 9/11/2016 11/9/2016 26 High School or Below male
333 386 386 COLLECTION 800 15 9/11/2016 9/25/2016 46 High School or Below male
334 387 387 COLLECTION 1000 30 9/11/2016 10/10/2016 36 High School or Below male
335 388 388 COLLECTION 1000 15 9/11/2016 9/25/2016 38 Bechalor male
336 389 389 COLLECTION 1000 15 9/11/2016 10/25/2016 32 High School or Below male
337 390 390 COLLECTION 1000 15 9/11/2016 9/25/2016 30 college male
338 391 391 COLLECTION 800 15 9/11/2016 9/25/2016 35 High School or Below male
339 392 392 COLLECTION 1000 30 9/11/2016 10/10/2016 29 college female
340 393 393 COLLECTION 1000 30 9/11/2016 11/9/2016 26 college male
341 394 394 COLLECTION 800 15 9/11/2016 9/25/2016 32 High School or Below male
342 395 395 COLLECTION 1000 30 9/11/2016 10/10/2016 25 High School or Below male
343 397 397 COLLECTION 800 15 9/12/2016 9/26/2016 39 college male
344 398 398 COLLECTION 1000 30 9/12/2016 11/10/2016 28 college male
345 399 399 COLLECTION 1000 30 9/12/2016 10/11/2016 26 college male

Complete original test set.

In [33]:
pd.read_csv('loan_test.csv')
Out[33]:
Unnamed: 0 Unnamed: 0.1 loan_status Principal terms effective_date due_date age education Gender
0 1 1 PAIDOFF 1000 30 9/8/2016 10/7/2016 50 Bechalor female
1 5 5 PAIDOFF 300 7 9/9/2016 9/15/2016 35 Master or Above male
2 21 21 PAIDOFF 1000 30 9/10/2016 10/9/2016 43 High School or Below female
3 24 24 PAIDOFF 1000 30 9/10/2016 10/9/2016 26 college male
4 35 35 PAIDOFF 800 15 9/11/2016 9/25/2016 29 Bechalor male
5 37 37 PAIDOFF 700 15 9/11/2016 9/25/2016 33 High School or Below male
6 38 38 PAIDOFF 1000 15 9/11/2016 9/25/2016 24 college male
7 48 48 PAIDOFF 1000 30 9/11/2016 10/10/2016 32 Bechalor male
8 50 50 PAIDOFF 800 15 9/11/2016 9/25/2016 27 college female
9 61 61 PAIDOFF 1000 15 9/11/2016 9/25/2016 37 college male
10 64 64 PAIDOFF 800 15 9/11/2016 9/25/2016 24 High School or Below male
11 68 68 PAIDOFF 300 7 9/11/2016 9/17/2016 35 college male
12 76 76 PAIDOFF 1000 30 9/11/2016 10/10/2016 31 Bechalor male
13 78 78 PAIDOFF 1000 30 9/11/2016 10/10/2016 37 college female
14 84 84 PAIDOFF 1000 30 9/11/2016 10/10/2016 37 High School or Below female
15 85 85 PAIDOFF 1000 30 9/11/2016 11/9/2016 33 college male
16 88 88 PAIDOFF 800 15 9/11/2016 9/25/2016 43 Bechalor male
17 91 91 PAIDOFF 1000 7 9/11/2016 9/17/2016 32 Bechalor female
18 96 96 PAIDOFF 1000 15 9/11/2016 9/25/2016 26 High School or Below male
19 100 100 PAIDOFF 1000 7 9/11/2016 9/17/2016 29 High School or Below male
20 105 105 PAIDOFF 1000 30 9/11/2016 10/10/2016 30 college male
21 142 142 PAIDOFF 1000 7 9/11/2016 9/17/2016 27 High School or Below male
22 147 147 PAIDOFF 300 7 9/12/2016 9/18/2016 37 Master or Above male
23 150 150 PAIDOFF 1000 15 9/12/2016 10/26/2016 29 college male
24 156 156 PAIDOFF 1000 15 9/12/2016 9/26/2016 26 Bechalor male
25 167 167 PAIDOFF 800 30 9/12/2016 10/11/2016 28 college male
26 169 169 PAIDOFF 1000 30 9/12/2016 10/11/2016 38 college male
27 179 179 PAIDOFF 1000 30 9/12/2016 10/11/2016 46 college male
28 186 186 PAIDOFF 1000 30 9/12/2016 10/11/2016 33 Bechalor male
29 196 196 PAIDOFF 1000 30 9/12/2016 11/10/2016 29 college male
30 199 199 PAIDOFF 1000 30 9/12/2016 10/11/2016 29 college male
31 202 202 PAIDOFF 1000 15 9/12/2016 9/26/2016 36 High School or Below male
32 222 222 PAIDOFF 1000 30 9/12/2016 11/10/2016 29 college male
33 236 236 PAIDOFF 1000 30 9/12/2016 10/11/2016 30 college male
34 239 239 PAIDOFF 1000 15 9/12/2016 9/26/2016 36 High School or Below male
35 251 251 PAIDOFF 1000 30 9/13/2016 10/12/2016 29 college male
36 252 252 PAIDOFF 1000 30 9/13/2016 10/12/2016 28 High School or Below male
37 264 264 PAIDOFF 800 15 9/13/2016 9/27/2016 23 college male
38 287 287 PAIDOFF 1000 30 9/14/2016 10/13/2016 38 High School or Below female
39 295 295 PAIDOFF 1000 30 9/14/2016 10/13/2016 30 college female
40 302 302 COLLECTION 1000 30 9/9/2016 10/8/2016 33 High School or Below male
41 305 305 COLLECTION 1000 15 9/10/2016 9/24/2016 31 High School or Below female
42 309 309 COLLECTION 800 15 9/10/2016 9/24/2016 41 college male
43 310 310 COLLECTION 1000 30 9/10/2016 10/9/2016 30 college male
44 311 311 COLLECTION 800 15 9/10/2016 9/24/2016 26 High School or Below female
45 313 313 COLLECTION 1000 30 9/10/2016 10/9/2016 20 High School or Below male
46 315 315 COLLECTION 1000 15 9/10/2016 10/9/2016 26 High School or Below male
47 328 328 COLLECTION 1000 30 9/11/2016 10/10/2016 24 High School or Below female
48 331 331 COLLECTION 800 15 9/11/2016 9/25/2016 27 college male
49 348 348 COLLECTION 1000 30 9/11/2016 10/10/2016 32 High School or Below male
50 349 349 COLLECTION 800 15 9/11/2016 9/25/2016 29 college male
51 369 369 COLLECTION 1000 30 9/11/2016 10/10/2016 37 High School or Below male
52 370 370 COLLECTION 800 15 9/11/2016 9/25/2016 36 High School or Below male
53 396 396 COLLECTION 1000 30 9/12/2016 10/11/2016 33 High School or Below male